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ABSTRACT 

Square Banach spaces are characterized among real Banach spaces in terms 
of the Alfsen-Effros structure topology on the extreme points of the dual ball. 
As a corollary, one has that the class of separable square spaces coincides with 
the class of separable G-spaces. It is also shown that for a G-space (hence for 
a square space) regularity of the quotient structure topology is equivalent to 
complete regularity, and that square spaces exist for which this topology is not 
regular. 

Among the various classes of Lindenstrauss spaces which have been studied 

are the class of square spaces, introduced by Cunningham in [4], and the class of 

G-spaces, introduced by Grothendieck in [8]. It was shown in [4] that every 

square space is a G-space, and that non-separable G-spaces exist which are not 

square. (See, however, the remark following Corollary 2 below.) In [1] Alfsen and 

Effros introduced a structure topology on the set E of extreme points of the 

closed unit ball in the dual of a real Banach space. Denoting by E, the quotient 

space obtained by identifying antipodal points in E, P. Taylor [10] has proved 

that a Lindenstrauss space is a G-space if and only if the structure topology 

on E, is Hausdorff. The first result of this paper (Theorem 1) is the following 

analog for square spaces: a necessary and sufficient condition for a real Banach 

space X to be square is that the bounded structurally continuous functions on E, 

separate points in E,. (Note that this does not assume that X is a Lindenstrauss 

space.) As corollaries to this theorem we have: 

t Part of this paper is from the author's Ph.D. thesis prepared at Bryn Mawr College under 
the direction of Professor Frederic Cunningham, Jr., whose valuable guidance is greatly apprecia- 
ted by the author. 
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(i) Every separable G-space is square. 

(ii) A separable real Banach space is square if and only if E~ is structurally T1 

and normal. 

(iii) The class of  (Jerison) C~-spaces is contained in the class of  square spaces. 

Following these results we exhibit a base for the structure topology in the case 

of  a G-space (Lemma 5) and use it to prove (Theorem 2) that for a G-space, 

structural regularity of  E~ implies complete regularity. Finally, we make use of 

the base in Lemma 5 to construct a square space for which E~ is not structurally 

regular; this example shows that the inclusion in (iii) above is proper and that the 

hypothesis of  separability cannot be omitted from (ii). 

Only real Banach spaces will be considered, and we shall use the following 

notation and terminology. If  X is a Banach space, then E = ext B(X*) denotes 

the set of  extreme points of the closed unit ball B(X*) in the dual of X, and E is 

the weak* closure of  E. Regarding X as a space of  functions on E, let .~'(X) 

denote the algebra of multipliers of X;  that is, a bounded real function f on E 

belongs to .,g(X) if for each x e X there is y ~ X satisfying f (p )x  (p) = y(p) for 

all p e E. (This algebra was introduced in [3].) If  T is a topological space, then 

re(T) is the Banach space of  all bounded real functions on T with the uniform 

norm, and C(T) is the subspace of re(T) consisting of  continuous functions. If  

f~ is a compact Hausdorff space, then, as defined in [4], a closed subspace X of 

m(~) is an upper semicontinuous (USC) scalar function space (on f~) provided 

(i) Ix[ is upper semicontinuous for each x e X, and 

(ii) X is invariant under multiplication by elements of  C(fl). 

If  X is an USC scalar function space on f~, then for each t ~f l  the evaluation 

functional ~ is defined on X by t(x) = x(t) for all x e X. 

A square Banach space may be thought of  as an USC scalar function space on 

some f~, and E as the set of  nonzero evaluation functionals and their negatives. 

These results from [4] and [5] are stated precisely in the following two lemmas. 

LEMV_A 1. (['4, p. 553]). A Banach space is square if and only if it is 

isometric to an USC scalar function space. 

LEMMA 2 (['5, Th. 1]). I f  X is an USC scalar function space on f~, then 

= 

If X is a Banach space, the Alfsen-Effros structure topology on E is the topology 

whose nonempty closed sets are of  the form E n N, where N is a nonzero weak* 
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closed L-summand in X* ([I, Prop. 3.3]). In case X is a Lindenstrauss space, the 

structure topology on E coincides with the bifacial topology on E introduced in 

[6]. (See [1, pp. 168, 169].) To prove the following lemma, one simply imitates 

the proof of [6, Prop. 4.8], using [1, Lem. 3.8]. 

LEMMA 3 (See 16, Prop. 4.8]). I f  X is a Banach space, then for each x ~ X 

and o~ > O, the set 

is structurally compact. 

In what follows, E, = { { p , -  p}:p e E} has the quotient structure topology 

of E, and csb(E) (respectively, C~(E,)) denotes the Banach algebra of all bounded, 

structurally continuous functions on E (respectively, Eo) with the uniform norm. 

LEMMA 4 ([1, Th. 4.9]). I f  X is a Banach space, then C](E) = .t[(X). 

If X is a square space, then ..r separates linearly independent points in 

E ([4, Lem. 7]). This fact (a short proof of which is included below) will be 

combined with Lemma 4 to prove part of the following theorem. 

THEOREM 1. A Banach space X is square if and only if C~(Eo) separates 

points in E a. 

PROOF. Assume X is square. By Lemma 1 we may suppose that X is an USC 

scalar function space on a compact Hausdorff f~. For each p ~ E, let tp be the 

(unique) point in f~ such that p = _+ ?r (See Lemma 2.) Let { P l , -  Pl} and 

{P2, -- P2} be distinct points in E,. Then tp, # tp2 since Pi # --- P2. Choosefe C(f~) 

withf(tp,) #f(tp2), and define # on E by g(p) = f(tp) for all p e E. Then # ~ ~r 

since if x ~ X, then f x  ~ X and one easily verifies that a(p)x(p) = fx(p) for all 

p �9 E. Therefore # e C~(E) by Lemma 4. Defining g' on E, by #'(p, - p} = g(p) 

(the functions in ./[(X) are even), we have that g 'e  C~(E~) and 

g'{pl,- pl} g'{p2,- p2}. 

Conversely, suppose X is a Banach space with the property that C)(E,) separates 

points in E,. Let f~ denote the spectrum of C~(E,). To show that X is 

square, it is sufficient, by Lemma 1, to show that X is isometric to an USC scalar 

function space on D. Let e: Er ~ f~ be the evaluation map: e(t)(f) = f(t) for 

t e E, a n d f e  csb(E,). Then e is continuous and is injective because C~(E~) separates 

points in Er Using the Axiom of Choice, from each member t of Er choose a 
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point of  E, say Pr Then for each x e X  define the function x'  on f~ as follows. 

For co E f~, let 

x(pt) if co = e(t) 
X l(O.~) 

I 0 if 09 ~ e(E,,). 

Then x ~ x'  is an isometry of  X into m(~) by the Krein-Milman theorem. Let 

X ' =  {x': x ~ X}. To see that X'  is an USC scalar function space, let x ~ X, let ct>0, 

and denote by P the quotient map P(p) = {p, - p} of  E onto Er Then 

{ o ~ :  I x,(o~) I _>__ ~} = {oJEe(E~): i x,(o~) I ____~} 
= ~((t ~ Z,,: I x(p,)l  > ~}) 

= eo e ( { p  ~ E: Ix(P) I - ~}3, 
which is compact (hence closed) by Lemma 3 and the fact that e o P is continuous. 

Thus Ix' I is upper semicontinuous. Let f e  C(f~). Then 9 = f  o e o P is in C~(E). 

Hence, by Lemma 4, there exists y ~ X satisfying g(p)x(p) = y(p) for all p r E. 

One may routinely verify that f x '  = y '  on ~ .  Therefore X'  is an USC scalar func- 

tion space on f~, and the proof of  Theorem 1 is concluded. 

Since the functions in C~(E) are even, we have the following equivalent for- 

mulation of Theorem 1. 

COROLLARY 1. A Banach space is square if and only if C~(E) separates 

linearly independent points in E. 

COROLLARY 2. Every separable G-space is square. 

PROOF. In [6, p. 452] Effros applied [2, Chap. I, Sect. 10, Ex. 19-1 to show 

that if X is a separable G-space, then E, is Hausdorff. If  instead, one applies 1"2, 

Chap. IX, Sect. 4, Ex. 15], one has that E, is also normal. Thus C~(E,) separates 

points in E, by Urysohn's lemma. The conclusion now follows from Theorem I. 

By [4, Th. 2] there are (non-separable) G-spaces which are not square. One of 

the lemmas to this theorem ([4, Lem. 5]) is incorrect when Y is separable. (This 

can be seen from the proof of Corollary 2.) However, as Cunningham has remarked, 

the lemma is correct with a revised proof when Y is non-separable. 

The following result is obtained by combining Theorem 5, the proof of  Corollary 

2, and the fact that square spaces are G-spaces ([4, Th. 1]). 

COROLLARY 3. A separable Banach space is square if and only if E, is T 

and normal. 
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In what follows, if A and B are sets, then A - B denotes the complement of 

B i n A .  

COROLLARY 4. Every Ca-space is square. 

PROOF. If X is a Ca-space, then/7 is contained in E u {0}, and E, is homeo- 

morphic to E/R, where E has the relativized weak* topology and pRq .~ p = +_ q 

([7, Th. 9]). The quotient space E ]R is locally compact Hausdorff since E = / ~  

- {0} is locally compact Hausdorff, the members of R are compact, and the 

saturation of each (relatively) closed subset of E is closed in E ([9, Th. 5.20, 

3.12, 3.10]). Thus E/R is a Tychonoff space (TI and completely regular), hence the 

same is true of E~. Therefore C~(E~) separates points of E,, so X is square by 

Theorem 1. 

I fX is a square space for which E, is completely regular, then, in the proof of 

Theorem 1, the continuous injection e of E, into the spectrum ~ of C~(E,) is a 

homeomorphism of E~ onto e(E,), and ~ is the Stone-(~ech compactification of 

E,. This is the case, for example, when X is separable or is a C,-space. (See 

Corollaries 3 and 4.) As Theorem 2 will show, this is also the case when E, is 

regular. 

LEMMA 5. I f  X is a G-space, then a base for the structure topology on E 

is the family  {V~: x e X } ,  where Vx = {peE:  x(p) r 0}. 

PROOF. Since E ,-" [0, 1]E ([10, Th. 1]), it follows from [6, Cor. 5.9] that for 

each x in X the set E -  Vx is structurally closed. To show that the sets V~ form a 

base, let U be structurally open and let p e U. Then E - U = N n E, where N is 

a weak* closed subspace of X*. Since pC N, there is x e X with x(p) = 1 and 

x(N) = 0. Then p ~ V,~ c U. 

It follows from I.emma 5 that if X is a G-space, then a base for the (quotient) 

topology on E, is the family {P(V~): x e X}, where P(p) = {p, - p} is the natural 

projection of E onto E,. 

THEOREM 2. I f  X is a G-space for which E~ is regular, then E~ is completely 

regular. 

PROOF. Since Eo is regular by hypothesis, to prove that Er is completely regular 

it suffices to show that each point of E, has a completely regular neighborhood 

([2, Chap. IX, Sect. 1, Ex. 14]). Let t = P(p) be in E, and choose x ~ X with 

x(p) ~ O. Then P(V~,) is an open neighborhood of t, by Lemma 5. Further, 
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P(Vx) is regular and is a-compact by Lemma 3 since Vx is the union of the compact 

sets {q~E:  Ix(q)l >-l /n},  n = 1,2,.. . .  Therefore P(Vx) is normal ([9, Prob. 

5.Y and Lem. 4.1]), hence completely regular since points in Eo are closed (because 

X is a Lindenstrauss space). 

If  X is a non-separable square space, then the structurally continuous functions 

on E, distinguish points in E, (Theorem 1) but, unlike the separable case, they may 

not distinguish points and closed sets. This is illustrated by the following example 

of a square space for which Eo is not regular. 

Let f~ denote the set of all ordinals less than or equal to the first uncountable 

ordinal tt together with the order topology. Denote by L the set of ordinals in 

f~ with no immediate predecessor (0 is in L) and by F the set of ordinals in L of 

the form t + co, where t e L and co is the first infinite ordinal. Define the function 

xl on f~ as follows: xx(t) = 0 if t ~ F, xl(t) = 1 if t E L -  F, and xl(t  + n) = 1/n, 

n = 1,2,. . . ,  if t e L  with t # tl. Then xl is upper semicontinuous on f~ and 

continuous at each point of F u (f~ - L). Let X denote the uniform closure of 

the linear space of all functions of the f o r m f  + 9xt ,  where f , 0  e C(f~) a n d f  = 0 

on L - F .  Then X is an USC scalar function space on f~ since X is invariant under 

multiplication by elements of C(t2) and for each x e X, the function ] x I is upper 

semicontinuous on f~. Thus X is a square space by Lemma 1. Further, 

E = { + h t e f~} by Lemma 2, since for each t ~ f~ there exists x e X with x(t) ~ O. 

Hence the map t ~ {i r, - / ' }  is a bijection of O onto Eo. The weak topology induced 

by this map, which we call the structure topology on f~, has as base the family of 

sets of the form V~ = { t e f ~ : x ( t ) r  for x e X .  To prove that Eo is not 

structurally regular, we will show that the point t 1 and the structurally closed set 

F (which is just f~ - V~I ) do not have disjoint structural neighborhoods. For this 

it suffices to show that if x E X with x(tl) ~ O, then there exists t e F with the 

property that y ~ X and y(t) ~ 0 imply Vy c3 V~ # ~ .  So suppose x(tx) # 0 and 

let ~ = x(q). We may assume (for simplicity) that ~ > 0. By definition of X 

there exist sequences {f,} and {9,} in C(~) such that f ,  +O,xx converges uniformly 

to x on f~ and each f , = 0  on L - F .  Then 9,(tx) ~ ~ since ta is in L - F .  Further, for 

each n there is s, < tl such that f ,  = 0 and 9, = K , ( a  constant) on the interval 

(s,, q] .  Let s = sup, s, and let U = (s, q] .  Then, since K,  = O , ( q ) ~  ~, we have 

for t ~ U and n sufficiently large, 

f.(t) + g.(t)xx(t) = K.x~(t) > oexx(t)/2. 

Therefore x(t) => text(t)/2 for all t in U. Choose t in F c3 U, and suppose y E X with 
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y(t) # 0. Since y is cont inuous  at t (because t eF)  

s o m e  t' < t with t' in U - L. Then xx(t') > 0 and so 

x(t') > ~xl(t') /2 > O. 

Therefore t' is in Vy n Vx. 

we have y( t ' )  # 0 for  
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